

Daily	Tutorial	Sheet-8
Duily	lutoliai	JIICCL

Level-2

96.(A)
$$\operatorname{CrO}_2\operatorname{Cl}_2 \to x + 2(-2) + 2(-1) = 0$$

$$\Rightarrow$$
 $x = +6$

$$MnO_4^- \longrightarrow x - 8 = -1$$

$$x = +7$$

- **97.(C)** Mn is in maximum O.S. of +7 in KMnO₄.
 - :. It cannot be oxidised further
- **98.(A)** O.S. of both Fe & Co is + 3.

99.(D)
$$K_2Cr_2O_7 + FeC_2O_4 + H^+ \longrightarrow Cr^{+3} + Fe^{+3} + CO_2$$

 $n_f = 6$ $n_f = 3$

The number of moles of ferrous oxalate required per mole of dichromate will be 2.

100.(ABD)
$$I^- \longrightarrow I_2$$
 (oxidation) ; $ClO_3^- \longrightarrow Cl^-$ (reduction)

Balanced equation is, $6I^- + ClO_3^- + 6H_2SO_4 \longrightarrow Cl^- + 3I_2 + 6HSO_4^- + 3H_2O_4 \longrightarrow Cl^- + 3H_2O_4 \longrightarrow Cl^-$

101.(B) Meq. of NaBrO₃ =
$$85.5 \times 0.672 = 57.456$$

Let weight of $NaBrO_3 = W$

$$\therefore \frac{W}{M_{NaBrO_3}} \times 6 \times 1000 = 57.456 \text{ (equivalent weight = M/6) of n-factor = 6}$$

$$\therefore \frac{M}{151} \times 6 \times 1000 = 57.456 \quad \therefore \quad W = 1.45 \text{ gm}$$

Hence, (B) is the correct answer.

$$\therefore \frac{W_{NaHSO_3}}{M_{NaHSO_3}} \times 2 = \frac{0.58}{198} \times 6 \qquad \text{(n-factor of NaHSO_3 = 2 ; NaIO_3 = 6)}$$

$$\Rightarrow$$
 W_{NaHSO₃} = 0.91g

103.(D) Let us first solve this Problem by writing the complete balanced reaction.

$$3BaCl_2 + 2 Na_3PO_4 \longrightarrow Ba_3(PO_4)_2 \downarrow + 6NaCl$$

We can see that the moles of BaCl₂ used are $\frac{3}{2}$ times the moles of Na₃PO₄. Therefore, to react with 0.2 mol of Na₃PO₄, the moles of BaCl₂ required would be $0.2 \times \frac{3}{2} = 0.3$. Since BaCl₂ is 0.5 mol, we can conclude that Na₃PO₄ is the limiting reagent. Therefore, moles of Ba₃(PO₄)₂ formed is $0.2 \times \frac{1}{2} = 0.1$ mol .

$$\frac{0.52}{E} \times 1000 = 100 \times 0.1 \qquad \therefore \quad E = 52$$

105.(A) 34 g
$$H_2O_2$$
 in 1.12 L solution

$$\Rightarrow \quad \text{1 mole } \text{H}_2\text{O}_2 \text{ in } 1.12 \text{ L solution} \quad \Rightarrow \quad \frac{1}{1.2} \text{ mole in } 1 \text{ L solution}$$

$$n_{\text{O}_2} = \frac{1}{2.24} \text{ mole} = \frac{\text{V}_{\text{O}_2}}{22.4} \quad \Rightarrow \quad \text{V}_{\text{O}_2} = 10$$